非线性掺镱光纤放大器产生宽光谱机理

郭瑾颐,徐润亲,范路遥,许昌兴,田金荣,宋晏蓉* 北京工业大学应用数理学院,北京 100124

摘要 系统地研究了在非线性掺镱光纤放大器中产生宽带光谱的特性,对不同种子脉冲激光的中心波长、放大器 增益光纤长度对光谱输出特性的影响进行系统实验及分析。实验中采用非线性偏振旋转锁模技术获得非线性放 大器的种子光,输出为耗散孤子脉冲。当种子脉冲激光中心波长为 1041 nm、放大器的增益光纤长度为 8 m 时,获得了较好的平坦宽光谱,波长范围为 1040~1600 nm 时,其平坦度约为 10 dB,其中 1040~1250 nm 波长范围的宽 光谱平坦度小于 1.5 dB。

关键词 激光光学;放大器;锁模;受激拉曼散射;掺镱光纤;平坦宽光谱 中图分类号 TN248 **文献标识码** A

doi: 10.3788/CJL201946.0901009

Mechanism of Broadband Spectrum Generation Based on Nonlinear Ytterbium-Doped Fiber Amplifier

Guo Jinyi, Xu Runqin, Fan Luyao, Xu Changxing, Tian Jinrong, Song Yanrong* College of Applied Sciences, Beijing University of Technology, Beijing 100124, China

Abstract The influences of central wavelength of the seed pulse and gain fiber length of the amplifier on the characteristics of broadband spectra are systematically investigated based on nonlinear ytterbium-doped fiber amplifiers. The dissipative solitons from the nonlinear amplifier are obtained by using the nonlinear polarization rotation mode-locking technique. The best flat wide spectrum with wavelength range of 1040-1600 nm is obtained when the center wavelength of the seed pulse is 1041 nm and the gain fiber length of the amplifier is 8 m. The flatness is about 10 dB, and the wide spectral flatness is less than 1.5 dB from 1040 to 1250 nm.

Key words laser optics; amplifier; mode locking; stimulated Raman scattering; ytterbium-doped fiber; flat broadband spectrum

OCIS codes 140.3280; 140.3550; 140.3615

1 引 言

宽光谱最早于 1970 年由 Alfano 发现,并在 1980 年被命名为"超连续谱"^[1-2]。宽光谱光源在光 学相干层析成像(OCT)、全内反射荧光、荧光生命 周期成像显微镜、光学频率梳等领域都有广泛的应 用^[3-6],这些应用都需要宽带宽、高平坦度和高输出 功率的光谱。

宽光谱的产生方法有两种。其中一种方法是将 高能量的超短脉冲激光耦合进介质中产生宽光谱。 光纤由于具有长度不受限制、光纤截面小、在较低的 功率下即可获得较高的非线性等特点,成为产生宽 光谱的首选介质。普通光纤、稀土掺杂光纤^[7-9]和微 结构光纤都可以实现宽光谱输出,如掺锗光纤 (GDFs)、掺磷光纤(PDFs)^[10]、拉锥光纤和光子晶 体光纤(PCFs)^[11-16]等。PCFs或其他高非线性光纤 的空心结构以及较小的纤芯孔径,导致光纤耦合难 度大、效率低、输出功率小。另一种方法是直接通过 非线性光纤放大器产生宽光谱。Pioger等^[7]在非线 性光纤放大器中获得了波长范围为1.06~1.75 μm、 功率谱密度为3 mW/nm的750 nm宽光谱输出。 国防科技大学的Song等^[9]在一个非线性掺钚的光 纤放大器中,获得了光谱范围为1064~1700 nm、光 谱平坦度优于12 dB、平均输出功率为70 W的平坦

收稿日期: 2019-04-30; 修回日期: 2019-05-14; 录用日期: 2019-05-21

基金项目:国家自然科学基金(61575011)、国家重点研发计划重点专项(2017YFB0405200)

^{*} E-mail: yrsong@bjut.cn

宽光谱输出。其后,该组研究人员又在抽运功率超 过 200 W 的非线性光纤放大器中获得了光谱范围 为 1064~2200 nm、平坦度为 10 dB 的 740 nm 宽光 谱输出^[17]。Guo 等^[10]采用铒/镱共掺光纤的主振 荡功率放大器(MOPA)实现了最大输出功率为 1.02 W,光谱范围为 1220~1700 nm、平坦度为5 dB 的宽光谱输出。本课题组在之前的工作中也获得了 1060~1200 nm 的高平坦宽光谱^[18]。此外,Wang 等^[19]对全正色散掺铒光纤放大器中啁啾脉冲放大 结果进行了分析,实验结果表明放大器的增益分布 会随着种子光中心波长的变化而变化。

在非线性光纤放大器中,受自相位调制、交叉相 位调制、四波混频、受激拉曼散射(SRS)等非线性效 应的影响^[20-28],功率放大与光谱展宽同步发生,其中 种子光脉冲的相关参数和光纤放大器的增益光纤长 度对输出功率、输出谱宽和输出光谱的平坦度的影响 至关重要^[29-30]。为了获得更宽、更好的宽光谱,本文 系统地研究了种子光脉冲的中心波长、放大器的增益 光纤长度对非线性掺镱光纤放大器产生的宽带光谱 特性的影响。当种子光脉冲的中心波长为1041 nm、 增益光纤长度为 8 m时,实现了平坦度约为10 dB、光 谱范围为 1040~1600 nm 的平坦宽光谱输出,其中 1040~1250 nm 的宽光谱平坦度小于 1.5 dB。

2 实验装置

实验装置分为种子脉冲激光器和非线性激光放 大器两部分。

2.1 种子脉冲激光器

图 1 所示为种子光脉冲激光部分的实验装置。 种子光脉冲由全正色散非线性偏振旋转(NPR)被 动锁模掺镱光纤激光器产生,输出为耗散孤子脉冲。 将中心波长为 980 nm 的抽运源通过 980/1030 nm 波分复用器(WDM)耦合进环形腔,通过隔离器 (ISO)保证光在腔内单向运转。环形腔的总长度约 为 8.6 m,包含 8 m 长的普通单模光纤(SMF)、 22 cm长的掺镱光纤(YDF),以及约 40 cm 的空间光 部分。空间光部分包括 1/4 波片(QWP)、半波片 (HWP)、双折射滤波片(BF)、偏振分光棱镜(PBS)以 及两端的准直器。BF 的 3 dB 带宽为 12 nm,利用耦 合器(OC)将输出的种子脉冲激光耦合进光纤放大 器,其输出端口为 97%输出。当抽运功率为 460 mW 时,种子脉冲激光的最大输出功率为 126 mW。

图 1 NPR 锁模掺镱光纤激光器实验装置图(种子脉冲部分)

Fig. 1 Experimental setup of ytterbium-doped NPR mode-locked fiber laser (seed pulse part)

2.2 非线性激光放大器部分

图 2 所示为基于种子光脉冲的非线性掺镱光纤 放大器的实验装置。放大器中采用两个带尾纤耦合 的激光二极管(LDs)作为抽运源,每个抽运源的中 心波长均为 976 nm,最大输出功率均为 7 W。将双 包层掺镱光纤(DCYDF,Nufern,美国)作为放大器 的非线性增益光纤,其内包层直径为 130 μm,数值 孔径(NA)为 0.46; 纤芯 直径为 10 μm,NA 为 0.075。通过调节放大器中非线性光纤的长度来改 变放大器中的非线性效应,以获得最佳的光谱宽度。 输出光谱经光纤衰减器衰减后,再通过光谱仪 (OSA)对其进行测量。

3 实验结果

3.1 种子脉冲激光实验

锁模光纤激光器的种子光脉冲特性对光纤放大 器输出光谱宽度和形状至关重要,因此本实验先对 种子脉冲的参数进行调节和优化。在 NPR 锁模光 纤激光器中,通过改变腔内偏振态和抽运功率,可 以实现不同类型的锁模种子脉冲输出,如耗散孤子

图 2 非线性掺镱光纤放大器实验装置图(放大器部分)

Fig. 2 Experimental setup of nonlinear ytterbium-doped fiber amplifier (amplification part)

(DSs)、耗散孤子共振(DSR)和类噪声脉冲。其中, DSs具有良好的稳定性,能有效克服脉冲分裂,实现 高能量的锁模脉冲输出,因此本实验选用 DSs 作为 放大器的种子源。

图 3 所示为在 460 mW 抽运功率下种子光的光

谱形状。在不改变 DSs 锁模脉冲输出状态的前提下,通过调节两个 1/4 波片、半波片和双折射滤波片的旋转角度,获得了不同中心波长的种子光,波长范围为 1027~1041 nm,光谱宽度保持在 13~15 nm 的范围内。从图 3 可以看出,获得的光谱形状由两

(a) 1027 nm; (b) 1030 nm; (c) 1033 nm; (d) 1036 nm; (e) 1039 nm; (f) 1041 nm
Fig. 3 Seed pulse spectra of DSs at different polarization states with center wavelengths from 1027 to 1041 nm.
(a) 1027 nm; (b) 1030 nm; (c) 1033 nm; (d) 1036 nm; (e) 1039 nm; (f) 1041 nm

个陡峭的边缘和中心突起部分组成,是典型的 DSs 锁模脉冲光谱图。输出脉冲的射频频谱如图 4 所 示。可以看到,获得的脉冲激光重复频率为 24.6 MHz,当中心波长变化时,重复频率保持不变。 输出光的信噪比约为 70 dB,种子光锁模脉冲状态 稳定。图 5 所示为 460 mW 抽运功率下 DSs 种子 脉冲的自相关曲线,假设实验输出的光谱为高斯曲 线,用高斯函数对其进行拟合。高斯函数的去卷积 系数为 1.41,从图 5 可以看到,经过去卷积后,获得 的脉冲宽度约为 13.91 ps。

图 4 种子脉冲的射频频谱

Fig. 4 Radio frequency spectrum of seed pulse

图 5 DSs 种子光的自相关曲线

Fig. 5 Auto-correlation curves of DSs seed pulse

3.2 非线性激光放大器实验

本实验研究了种子光的中心波长及放大器的增 益光纤长度对输出宽光谱特性的影响。

首先将图 3 中获得的不同中心波长的 DSs 脉冲作为种子源,输入到掺镱光纤放大器(YDFA)中, 获得了一系列输出光谱。图 6 为在 10 W 抽运功率 下,在 YDFA 中输入不同中心波长(1027 ~ 1041 nm)的种子光脉冲时放大器的输出光谱图,插 图为 1050~1250 nm 波长范围的光谱放大图。掺 镱增益光纤的零色散点在 1273 nm,对本放大系统 来说,入射光的中心波长均位于正常色散区,此时自 相位调制可使光谱展宽,但展宽能力有限。当抽运 功率超过 SRS 阈值时,随着入射激光功率提高,光 谱的展宽主要受级联 SRS 的影响。从图 6 可以看 出,当种子光中心波长为 1027 nm 和1030 nm时,放 大器输出光谱范围主要集中在一阶拉曼光谱区,并 且变化不大。当种子光的中心波长增加到 1033~ 1039 nm 时,放大器输出光谱中出现明显的二阶和 三阶拉曼峰,光谱展宽。当中心波长变为 1041 nm 时,三阶拉曼效应显著增强,波长重心向长波长转 移,且绝大部分能量集中在 1250 nm 前。可见,当 DSs 种子脉冲的中心波长增大时,放大器输出光谱 逐渐展宽,长波长的脉冲信号更容易实现更宽的光 谱输出。1041 nm 是本实验系统中最适合抽运 YDFA 的 DSs 中心波长。

- 图 6 种子光中心波长为 1027~1041 nm 的 YDFA 的输出 光谱(dB 谱),插图为 1050~1250 nm 的放大图
- Fig. 6 Output spectra of YDFA with seed pulse central wavelength from 1027 to 1041 nm (dB spectrum). Inset is local enlarged drawing from 1050 to 1250 nm

根据计算结果,也能解释不同中心波长对输出 宽光谱的影响。在光纤中,通常用波数来表示拉曼 频移量,即 $\Delta \omega = \frac{1}{\lambda_p} - \frac{1}{\lambda_s}$,其中 λ_p 为抽运光波长, λ_s 为拉曼光波长,掺镱光纤中的拉曼频移量为 13.2 THz。当种子光中心波长为1027 nm时,相应 的一、二、三阶斯托克斯波长分别为 1075,1129, 1188 nm;当种子光中心波长为1041 nm时,相应的 一、二、三阶斯托克斯波长为 1096,1152,1213 nm, 因此 1041 nm 的种子光具有较宽的光谱。

实验中没有进一步增加种子光的中心波长,这 主要是因为种子光继续向长波长方向移动时,锁模 状态发生改变,变为类噪声锁模,无法继续保持 DSs 锁模。当长波长逐渐超过零色散点 1273 nm 时,调 制不稳定性、高阶孤子分裂、孤子自频移等使光谱继 续展宽并形成最终的输出光谱,这也导致了波长大 于 1300 nm 后输出功率明显下降。

在正常色散区域(波长短于1273 nm),影响非

线性掺镱光纤放大器输出光谱宽度的主要因素是 SRS 效应,和增益光纤的长度有关,因此通过改变 增益光纤 DCYDF 的长度,以观察输出光谱特性与 增益光纤长度之间的关系。图 7 所示为在 14 W 的 抽运功率下,当 DCYDF 长度从 6 m 增加到 20 m 时,从YDFA输出的一系列dB谱。结果表明:当增 益光纤的长度从 6 m 增加到 8 m 时,波长为 1500 nm左右的光谱宽度增大;当增益光纤长度超 过8m时,其频谱宽度随增益光纤长度的增加而减 小。文献「31]中对此进行了理论模拟,证实了掺镱 光纤放大器的增益在光纤长度变化过程中出现了极 大值,这表明增益光纤长度和放大器增益之间并不 是单调的线性关系。虽然长的增益光纤有助于累积 较多的非线性效应,展宽光谱,但光纤越长,色散越 多,且损耗大于增益,当增益光纤长度增加时,输出 光谱宽度随之减小。而在最佳光纤长度处,放大器 的抽运几乎完全被吸收,此时输出光谱最宽。

图 7 种子光中心波长为 1041 nm 时,不同 DCYDFs 长度 对应的输出光谱(dB 谱)

Fig. 7 Output spectra (dB spectra) with different length of DCYDFs when center wavelength of seed pulse is 1041 nm

选用中心波长为 1041 nm 的 NPR 种子脉冲和 DCYDF 为 8 m 的光纤放大器,当抽运功率从 4 W 上升到 14 W 时,相应的输出光谱如图 8 所示。可 以看到,随着抽运功率的增加,输出光谱向长波长方 向展宽。当抽运功率为 14 W 时,获得了光谱范围 为 1040~1600 nm、平坦度为 10 dB 的宽光谱。图 8 插图 所示为最宽光谱的线性光谱图,在 1040~ 1250 nm范围,获得了平坦度小于 1.5 dB 的 200 nm 以上高平坦度宽光谱。从 dB 谱可以看到,输出光 谱较为平坦,光谱范围在 1040~1600 nm 时,平坦 度可达 10 dB,在 1040~1250 nm 范围时,平坦度可 达 1.5 dB,其中能量主要集中在 1040~1250 nm 范 围内。

- 图 8 当 NPR 种子脉冲的中心波长为 1041 nm, DCYDF 长度为 8 m 时, YDFA 的输出谱随抽运功率的变 化,插图为 YDFA 输出最宽的线性谱,抽运功率为 14 W
- Fig. 8 Output spectra of YDFA versus pump power when center wavelength of NPR seed pulse is 1041 nm and length of DCYDF is 8 m. Inset is the widest output spectrum of YDFA with pump power of 14 W

4 结 论

为了获得更好的平坦宽光谱,本文系统研究了 种子光脉冲中心波长、放大器增益光纤长度对非线 性光纤放大器输出光谱宽度及平坦度的影响。种子 光由非线性偏振旋转锁模掺镱光纤激光器获得,当 抽运功率为460 mW时,输出功率为126 mW,中心 波长在1027~1041 nm 范围内可调。将其作为种 子光耦合进非线性掺镱光纤放大器中,当抽运功率 为14 W、种子光中心波长为1041 nm、增益光纤长 度为8 m时,实验上获得了光谱范围为1040~ 1600 nm、平坦度为10 dB的最大宽光谱输出。其 中在1040~1250 nm 范围内,获得了平坦度小于 1.5 dB的200 nm以上高平坦度宽光谱。该非线性光 纤放大器可为光学相干断层扫描成像系统提供有效 光源。

参考文献

- Alfano R R, Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physical Review Letters, 1970, 24(11): 592-594.
- [2] Gersten J I, Alfano R R, Belic M. Combined stimulated Raman scattering and continuum selfphase modulations[J]. Physical Review A, 1980, 21 (4): 1222-1224.
- [3] Sotobayashi H, Chujo W, Ozeki T. Wideband tunable wavelength conversion of 10-Gbit/s return-tozero signals by optical time gating of a highly chirped

rectangular supercontinuum light source [J]. Optics Letters, 2001, 26(17): 1314-1316.

- [4] Bellini M, Hänsch T W. Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer [J]. Optics Letters, 2000, 25(14): 1049-1051.
- [5] Wang Y M, Zhao Y H, Nelson J S, et al. Ultrahighresolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber[J]. Optics Letters, 2003, 28(3): 182-184.
- [6] Song S Y, Li Z L, Gao Y H, et al. Swept source optical coherence tomography system for transdermal drug delivery imaging by microneedles [J]. Chinese Journal of Lasers, 2018, 45(8): 0807001.
 宋思雨,李中梁,高云华,等.用于微针经皮给药成像的扫频 OCT 系统[J].中国激光, 2018, 45(8): 0807001.
- [7] Pioger P H, Couderc V, Leproux P, et al. High spectral power density supercontinuum generation in a nonlinear fiber amplifier[J]. Optics Express, 2007, 15(18): 11358-11363.
- [8] Hao Q, Zeng H P. Cascaded four-wave mixing in nonlinear Yb-doped fiber amplifiers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20 (5): 0900205.
- [9] Song R, Hou J, Chen S P, et al. High power supercontinuum generation in a nonlinear ytterbiumdoped fiber amplifier [J]. Optics Letters, 2012, 37 (9): 1529-1531.
- [10] Guo C Y, Ruan S C, Yan P G, et al. Optimized flat supercontinuum generation in high nonlinear fibers pumped by a nanosecond Er/Yb co-doped fiber amplifier[J]. Laser Physics, 2014, 24(4): 045104.
- [11] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with an anomalous dispersion at 800 nm [J]. Optics Letters, 2000, 25(1): 25-27.
- Birks T A, Wadsworth W J, Russell P S J.
 Supercontinuum generation in tapered fibers [J].
 Optics Letters, 2000, 25(19): 1415-1417.
- [13] Yan P G, Zhang G L, Wei H F, et al. Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output[J]. Journal of Lightwave Technology, 2013, 31(23): 3658-3662.
- [14] Wei H F, Chen H W, Chen S P, et al. A compact seven-core photonic crystal fiber supercontinuum source with 42.3 W output power[J]. Laser Physics Letters, 2013, 10(4): 045101.
- [15] Kano H, Hamaguchi H O. Characterization of a

supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy[J]. Optics Letters, 2003, 28(23): 2360-2362.

- [16] Zhao L, Li C, Li Y, *et al*. Hundred-watt-level supercontinuum spectrum generation based on photonic crystal fiber[J]. Chinese Journal of Lasers, 2017, 44(2): 0201018.
 赵磊,李超,黎玥,等. 基于光子晶体光纤的百瓦超连续谱的产生[J]. 中国激光, 2017, 44(2): 0201018.
- [17] Song R, Hou J, Liu T, et al. A hundreds of watt all-fiber near-infrared supercontinuum [J]. Laser Physics Letters, 2013, 10(6): 065402.
- [18] Xu R Q, Dong Z K, Tian J R, et al. Wavelength tunable ultra-short pulses based on a flat broadband spectrum generated in a nonlinear ytterbium-doped fiber amplifier[J]. Chinese Physics B, 2017, 26(1): 014207.
- [19] Wang Y Q, Li L, Zhao L M. Chirped pulse amplification in an all-normal-dispersion erbiumdoped fiber amplifier [J]. Laser Physics, 2017, 27 (3): 035102.
- Baldeck P L. Cross-phase modulation in optical Kerr media: review of discovery experiments [J]. Proceedings of SPIE, 2014, 8940: 894013.
- [21] Liu X M, Cui Y D, Han D D, et al. Distributed ultrafast fibre laser[J]. Scientific Reports, 2015, 5: 9101.
- [22] Kudlinski A, Bendahmane A, Labat D, et al. Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber[J]. Optics Express, 2013, 21(7): 8437-8443.
- Shen Y R, Yang G Z. Theory of self-phase modulation and spectral broadening [M] // Alfano R
 R. The supercontinuum laser source. New York: Springer-Verlag, 2016: 1-32.
- [24] Savescu M, Bhrawy A H, Hilal E M, et al. Optical solitons in birefringent fibers with four-wave mixing for Kerr law nonlinearity [J]. Romanian Journal of Physics, 2014, 59(5/6): 582-589.
- [25] Xiao Y Z, Essiambre R J, Desgroseilliers M, et al. Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers [J]. Optics Express, 2014, 22(26): 32039-32059.
- [26] Pourbeyram H, Agrawal G P, Mafi A. Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber[J]. Applied Physics Letters, 2013, 102(20): 201107.
- [27] Aalto A, Nyström E, Ryczkowski P, et al.

Wavelength correlation maps in Raman supercontinuum generation [C] // 2013 IEEE Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference, May 12-16, 2013, Munich, Germany. New York: IEEE, 2014: 14252694.

- [28] Qiu Y, Xu Y Q, Wong K K Y, et al. Enhanced supercontinuum generation in the normal dispersion pumping regime by seeded dispersive wave emission and stimulated Raman scattering [J]. Optics Communications, 2014, 325: 28-34.
- [29] Mondal P, Bhatia N, Mishra V, et al. Cascaded Raman and intermodal four-wave mixing in conventional non-zero dispersion-shifted fiber for versatile ultra-broadband continuum generation [J].

Journal of Lightwave Technology, 2018, 36(12): 2351-2357.

- [30] Choudhury V, Arun S, Prakash R, et al. Highpower continuous-wave supercontinuum generation in highly nonlinear fibers pumped with high-order cascaded Raman fiber amplifiers[J]. Applied Optics, 2018, 57(21): 5978-5982.
- [31] Wang Y H, Ma C S, Li D L, *et al.* Theoretical analysis on gain characteristics of ytterbium-doped fiber amplifier[J]. Acta Photonica Sinica, 2008, 37 (5): 855-859.
 汪玉海,马春生,李德禄,等. 掺镱光纤放大器增益 特性的理论分析[J].光子学报, 2008, 37(5): 855-859.